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ABSTRACT: With advancements in Mass Spectrometry (MS) technology, high-
throughput data generation has become feasible, offering unprecedented opportunities for
comprehensive molecular characterization. The integration of artificial intelligence and
machine learning methods (AI/ML) has the potential to revolutionize data analysis in the
field of MS-based omics. The goal of this project is to continue the work implementing
and evaluating false discovery rate methods in Python for MS omics data and contributing
to the development of Al-based algorithms for molecular annotation. Methods will be
integrated in Al-based workflows for processing and annotating molecular signatures of
microbes in complex environmental samples, such as soil and plants, to support the study
of the role of molecular processes in transformative science. Clustering methods are
applied to the data to extract patterns. The generation of heatmaps for outlier detection
methods results are also part of the analysis. Venn diagrams are generated to visualize
common outliers detected by different algorithms. Finally, we built a graphical user
interface (GUI) to offer an interactive data visualization to the user, which generates a
histogram of confidence for targets/decoys matching outputs and display bar plots to
visualize abundances and mass-to-charge errors. It includes an option for the user to
choose a specific threshold for the false discovery rate estimation. The interface contains

tow buttons to select csv result files and functional buttons to establish bar plots adequate



for abundance and mass to charge errors. We dive into the fundamental concepts of
clustering methods, normalization techniques, and outlier detection algorithms. We
employed K-means and hierarchical clustering techniques to partition a dataset of
peptides into groups. This means that data points within the same cluster are more similar
to each other compared to those in different clusters. However, before applying clustering
algorithms, we preprocessed the data normalization techniques to ensure that features are
on a similar scale using Min-Max scaling and Z-score normalization techniques. For the
outlier detection methods, we adapted outlier Isolation Forest, Local Outlier Factor

(LOF), and One-class SVM technics.



INTRODUCTION:

Identification of chemical analytes and species is a common application of mass
spectrometry (MS). During the process, the sample undergo ionization to generate molecular ions,
and acceleration through an electric field. A magnetic field deflects the species which are
accelerated by an electric field and get detected by a sensor to measure their abundance. This
produces a mass spectrum, which is a plot of ion abundance versus mass-to-charge ratio. The
species can subsequently be determined using the charge to mass ratio. The mass spectrum
obtained provides information about the mass of the ions present in the sample. By analyzing the
peaks in the spectrum, scientists can determine the molecular weight of compounds present in the
sample. Additionally, the fragmentation pattern of ions can provide information about the structure
of molecules.

MS is helpful for finding new compounds and recognizing known molecules since it
enables the chemical identification of an unknown species. It plays a crucial role in pharmaceutical
analysis for drug discovery, development, and quality control. It is used for characterizing drug
molecules, studying metabolism, and detecting impurities.

While mass spectrometry is highly sensitive for many compounds, it may not be equally
sensitive for all types of molecules. Some compounds may not ionize efficiently or produce
detectable signals at low concentrations. Classical machine learning approaches are of limited
capabilities to analyze original mass spectrometry data at full spectral dimensions. Mainly, because
those approaches suffer a common issue known as curse-of-dimensionality that deteriorates the
clustering/classification accuracy on high-dimensional data [1].

PeakDecoder is an algorithm that automatically calculates error rates for metabolite
identification, independently of spectral annotations or libraries [2]. This proposed method
introduces an alternative approach to generating decoys from raw data-independent acquisition
(DIA) spectra, integrating principles from DIA and spectral library searching into a machine
learning (ML) framework that merges unbiased false discovery (UFD) and target-decoy
competition strategies. In order to showcase the effectiveness of our metabolomics workflow and
highlight its practicality, we implement this method in the analysis of microbial samples sourced
from diverse strains. Our method relies on an object detection technique that assigns a unique color
(RGB) to each ion precursor and fragment. By utilizing YOLOVS, an image detection tool, we
trained the tool to distinct colors for overlapping regions of these ions (red, green, blue). The
shaped white regions are considered for further processing and analysis. We apply some data
visualization to explore our datasets efficiently by providing graphical representations that can
reveal patterns and outliers that might not be immediately apparent in raw data.

I METHODS AND RESULTS:

The work during this internship centered around data analysis using different statistical methods.
The goal is to rate the false positive outcomes from data identifications of proteomics and
metabolomics in biological samples. Our work involved programming code that would help doing
the required operations and show meaningful results related to actual data experiments. We used
some biological material and Python programming language to create a decoy database to use it



for the false discovery rate (FDR) analysis. Using Python, we created a friendly useful graphical
user interface (GUI) (see Figure 1) to contain boutons to generate histogram of confidence for
target/decoys thresholds the user can tape in (see Figure 2-a). Another selection button is set to
select a file from which the user will specify one peptide he is interested in. Two other boutons are
set to generate abundance and m/z error bar plots for the peptide that the user selected (see Figure
2-b and Figure 2-c).
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Figure 1: Data visualization graphical user interface.
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Figure 2: Histograms generated by the Data visualization GUI. a: Histogram of confidence
for peptides. b: Histogram of abundance for a peptide. c: Histogram of Mzerrors for a peptide.



1. Normalization and Clustering methods:

Clustering methods are commonly used in peptides and metabolomics classifications to
group similar peptides or metabolites together based on their properties, such as mass-to-
charge ratio, retention time, abundance, or structural features. We applied hierarchical
clustering and k-means clustering to find subsets that are representative for the data
identifying inherent patterns and group the data into clusters without prior knowledge of
class labels. This reveals the natural groupings for retention time (Rt) against mass to
charge ratio (Mz) within the data. We normalized the data before clustering, which rescales
the data so that all variables have a similar scale, preventing variables with larger ranges
from dominating the clustering process (see figure 3).
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Figure 3: peptides clustering with and without normalization with k=12.

2. OQutlier detection methods:
Outlier detection methods are crucial in the analysis of peptides and metabolomics data to
identify data points that deviate significantly from the rest of the dataset. These outliers can
represent errors in data collection, sample contamination, or biologically interesting
observations. We applied Isolation Forest, Local Outlier Factor and One-class SVM
methods on our runs to classify the m/z errors on peptides. The outputs are fed into venn
diagram to explicitly show how these results are close or different from each other.

II. FUTUR WORK:

During my science undergraduate laboratory internship (SULI) at PNNL, I have learned
substantial advancements in programming and data analysis, yet there remains possibility for
enhancements and further implementations within our project. While our model exhibits notable
proficiency in training for proteins and metabolites, there's a necessity to extend its scope to
include other biological data types. To enhance the reliability and comprehensibility of our
findings, integration of false discovery rate, histogram of occurrences, clustering methodologies
with machine learning models is imperative. Additionally, optimizing time efficiency for
processing high-dimensional data is among our project's primary objectives. Our ambition is to
develop a comprehensive graphical user interface tool in Python, facilitating data visualization
using explicitly comparative histograms of different components results and FDR result
interpretation. This work is dedicated for assisting biologists and researchers in their collaborative
activities.



III. IMPACT ON LABORATORY AND NATIONAL MISSIONS:

This project contributed to augmented PNNL’s capabilities to analyze metabolomics and
proteomics samples in large-scale studies. This capability will be directly beneficial to DOE and
PNNL efforts to characterize and analyze compounds in microbial and plant communities.

IV.  CONCLUSION

Analyzing small molecules through mass spectrometry is vital for comprehending biochemical
processes across various domains such as the environment, oceans, and individual organisms.
Transitioning from manual selection and statistical calculations to automated methods holds
immense promise for researchers, facilitating more efficient and accurate analyses. The integration
of artificial intelligence tools for collecting biological samples and deriving meaningful statistical
insights represents a significant benefit for laboratory work. Through this second research
internship, I acquired proficiency in coding and deepened my understanding of fundamental
biological principles. I dived more in machine learning and data visualization, the tools for
interpretation and explanation for molecules processing results. This internship not only provided
insights into the working of national laboratories but also equipped me with valuable professional
skills essential for my future career vocations.

Upon its completion, this new project will stand as a groundbreaking attempt, packed with
innovative features designed to enhance the efficacy of biologists' endeavors. It serves as a
significant contribution to the Pacific Northwest National Laboratory by rationalizing the time and
cost associated with proteomics and metabolomics analysis. By facilitating preprocessing, peak
picking, feature extraction, and noise reduction, it elevates the quality and accuracy of data. The
fusion of mass spectrometry with machine learning presents compelling opportunities to glean
invaluable insights from complex datasets, potentially driving advancements in environmental
analysis and various other scientific domains pertinent to the laboratory's mission.
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